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I. Phys. A :  Math. Gen. 24 (1991) 5639-5650. Printed in the UK 

Enlarging the attractor basins of neural networks with noisy 
external fields 

H W Yaut and D J Wallace 
Department of Physics, James Clerk Maxwell Building, University of Edinburgh, Mayfield 
Road, Edinburgh EH9 3JZ U.K. 

RCceiK! 9 .4p!i! 1991 

AbslracL A neural network model wilh aplimal connections trained wilh ensembles of 
external, discrete, noisy fields is sludied. Allowing for non-zero erron in the storage, 
nwel behaviour is observed which is reflected in the model's retrieval map. Improvement 
in the model's content addressability is determined by comparing the maximum storage 
level at which there is a near 100% basin of atlraction. The cases presented here 
have the external field applied during training, during relrieval, and during bolh with 
statistically equal parameters. In all three the conlent addressability is improved over 
the zero external field network, wilh lhe equal lraining and relrieval fields case having 
lhe largest improvement. However, lhe apparent dominalion of lhe retrieval over the 
training field suggesls this simple equality is perhaps no1 the optimal relationship. 

i. rntr&uction 

The key feature of statistical mechanical models of neural networks is their ability to 
function as associative memories. This is a two-stage process with the network first 
trained to store a set of memory patterns, which are then later refrieved by the neurons' 
update dynamics. Retrieval of the desired pattern will be successful if the system is 

the memory pattem's alfracfor. &pressed in this way, content addressability is merely 
the consequence of having finite basins of attraction. 

The principle aim of this work is to examine how the basin of attraction can he 
enlarged by the use of memal fields which are noisy representations of the mem- 
ory patterns stored. Independent work has shown the beneficial effects of applying 
noisy external fields throughout retrieval (Engel er a1 1990) but as stated above, a 
network is defined in two stages and their role during the training phase should be 
explored. Moreover, both simulation (Gardner el a! 1989) a i d  analytical (Wong and 
Sherrington 1990a,b) results have shown that training a network with ensembles of 
noisy representations also improves content addressability. 

For these reasons this work calculates the properties of a network trained with 
ensembles of noisy external fields. The retrieval dynamics under a persistent, nohy 
external field is then examined, and the effects of the two fields compared. By looking 
at the fixed-point behaviour of the dynamics, the attractor structure is revealed, and 
from this it is judged whether content addressability has been improved. Finally 
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comparisons are made for the three cases when external fields are applied during 
training only, during retrieval only, and during both stages. 

H W Yau and D J Wallace 

2. The model 

The model is a single-layered network of N time-dependent binary spin neurons 
S ; ( t )  = fl,i = 1.. . N, required to store P uncorrelated pattems {Er},, = 
1 . . . P. Each neuron is diluteiy connected to C < In N othersites via the matrix 
Ji ,  /e and normalized by J i j z  = C. The high degree of dilution in the bonds 
is necessary for the dynamics at each time step to be self-averaging over all time 
steps, considerably simplifying its calculation (Derrida ef al 1987). 

The dynamics of the network is conducted by zero-temperature parallel update, 
with each site acting deterministically on the sign of its local field. Retrieval of a 
typical pattern {c;} is measured at each time step 1 by the overlap 

N 1 
m"(t )  3 --Cys;(t) 

N i  

such that m"(t - 00) = 1 when {Si ( t  - m)} = { c y } .  
In deference to Gardner, the network studied has anneal-optimized connections 

with the stored pattems quencheddkorder averaged (Gardner 1988). These connec 
tions are optimized with respect to  a pefomance function, in much the same way a 
magnetic spin system optimizes by seeking out its lowestenergy configuration. More- 
over, Gardner gave a convergent iterative algorithm to actually train the network with 
these optimal connections, one which directly reflects the performance function used. 
rlCIIILCI ,,,= y~'I"IIII.mILci ,",,LL,",, U,,, a1,u w111 "ci, rrrruLLr"~;ry "CILlCl I C L C I I G U  

trainingfunction, emphasizing its role in determining the network's properties. 
The training function chosen in the original Gardner model required the network 

to be invariant to the neurons updating, once the sites match a memory pattern. This 
is more concretely expressed by defining the srability field 

I T  ̂..̂  ̂ ..̂  ..n-n--.-"..-- c __..^. :-.. ~ ~ . .  .̂.A ... :I,  1_^ :.....:I:..̂,.. %.,.*SA- -..&-..--,.A *,. ^^ .I.- 
L" an Lllci 

(2) 

and requiring it to be positive definite for all i = 1 . . . N sites and p = 1 . . . P 
patterns. This demand can be made more stringent by requiring it to be larger than 
some positive constant n, the increasing of which allows the basin of attraction to be 
enlarged a t  the price of lowering the storage capacity (Forrest 1988). 

Further enlarging the basin of attraction by an improved training function is the 
goal of this work, with the additions influenced by two observations: firstly, that a 
network trained with the original Gardner requirement has improved retrieval upon 
adding a noisy external hint of the pattern to be retrieved; and secondly that training 
with emembles of noisy versions of the memory patterns improves the network's con- 
tent addressability to the clean patterns. The desire then is to train the network with 
ensembles of noiy external fields, in anticipation of later retrieval with a (statistically) 
similar field. This can be achieved with the training function 
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where is the external training field strength and {C;”,”} = A1 the noise factor. 
These quencheddisorder noise terms are enumerated over the s = 1 . . . Q ensembles 
for each pattern, and follow the probability distribution 

p(C) = ( 1  - fT)6[C - 11 + f@[C + 11 (4) 

with the mean fraction of wrong bits in the training field given by f,. 
This completes the definition of the model, and the remainder of this section is 

devoted to the relevant quantities calculated. 
The first quantity to look at is the distribution of the stability field as defined in 

equation (2). It transpires that the key characteristics of a network are largely given 
by this distribution (Abbott IW), which as an extensive quantity is also a suitable 
object over which to perform the quencheddisorder averages of the patterns {.$} 
and noises {C;”!‘}. Dropping the superfluous i-index, the distribution for a typical 
pattern {[’’=’) can be written in terms of the performance function (3) as 

where the integration is throughout the spherically constrained connections space, 
and the ((. . .)) brackets denote a quenched average over all patterns and noises. The 
inverse annealing temperature p controls how ‘strictly’ the training function should 
be obeyed, such that in the p - m zero-temperature limit the connections will find 
the optimal solution. Averaging over the {C”+)  ensembles of noises, the training 
function becomes a multitude of ( Q  + 1 )  binomial terms which in the large-Q (but 
< p) limit can be replaced by the mean 

The distribution function is then calculated by assuming the replica-symmetric ansatz, 
and taking the large connectivity and zero annealing temperature limits (Gardner and 
Derrida 1988) to give 

(Wong and Sherrington 1990a) where L ( z )  maximizes the function 

The new variable x is a result of the mathematics, related to the annealing tem- 
perature in determining how strictly the training function is to be enforced. It can 
by connected with a meaningful quantity by parametrizing the fraction of wrong hits 
to be stored per pattern F as the integral over the unwanted part of the stability 
distribution 

(9) 
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Evaluation of the integrals over the mean-field order parameters is done by the 
method of steepest descent, resulting in a saddle-point equation which gives an ex- 
pression for the storage capacity (patterns stored + connectivity) 

H W %U and D J Wallace 

One obvious reservation to all the above is the stability of the replica-symmetric 
ansatz. As has been pointed out before (Gardner and Derrida 1988) the structure of 
the relevant stability matrices are pretty much identical to those considered earlier 
(de Almeida and Thouless 1978) in the treatment of spin-glass models. From this the 
regime where this ansatz is stable has be calculated for a general training function 
(Griniasty and Gutfreund 1991), and this result will be used to check the calculation’s 
validity. 

Having obtained these properties of this network trained in the presence of noisy 
external fields, the model’s retrieval dynamics can finally be written down. The use of 
diluted connections allows this to be calculated as a time-iterative map of the overlap 
measure, with respect to an arbitrary pattern { t ; }  

This equation contains additional parameters to do with the application of a persistent 
external field during retrieval. This field is a noisy representation of the pattern to 
be retrieved, with f, the mean fraction of erroneous bits, and T~ the field strength. 
lhking the field strengths T= and T,, and the fractional storage error F all to zero 
restores-the retrieval dynamics for the original Gardner model (Kepler and Abbott 
1988). 

The above expression (11) is exact for the first time step, and also in the case of 
low connectivity as mentioned earlier in this section. The validity of this simplification 
has recently been confirmed by direct numerical simulations (Heindrich 1991) of dilute 
networks. Furthermore, earlier work simulating fully connected networks (Kepler 
and Abbott 1988) has stressed the importance of the first time step dynamics as being 
highly indicative of the network’s ultimate fate, a result with broadens the generality 
of these iterative map calculations. 

In summary, the distribution of the stability fields for a network trained with 
ensembles of noisy extemal fields is calculated. From this equation for the storage 
capacity a, the fractional storage error 7, and the iterative map for the dynamics 
are given. The first two are treated as parameters for relating to the somewhat non- 
intuitive pair (.,.). Finally, another two sets of parameters determine the fraction 
of noise (f, and f,) and strength ( T ~  and T ~ )  of the external fields, as used in the 
training and retrieval phases. 

3. The stability field distribution 

Before delving into the model’s dynamics, it is worthwhile to first examine the stability 
field distribution (7). This distribution gives an indication of the training function’s 
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effect as the following parameters are varied: the training field noise level f,, the 
field strength r,, the stability constant K ,  and the fraction of storage error F. 

Upon maximizing equation (S), it becomes apparent that the network‘s properties 
are not uniform throughout the range of the three parameters listed above. These 
parameters interplay in the mean training function (6) to produce three distinct 
regimes of behaviour in the network, as exemplified by the stability field distributions 
shown in figures l (a)- l (c) .  Intuitively, these three regimes are a reflection of how 
well the two t e r m  in the training func t ion4  ‘correct’ (1 - f,)e[AP + rT - K ]  term 
and an ‘incorrect’ f,e[A’ - T= - K ]  term-are satisfied. This is affected by the 
fractional storage error because demanding it to be low is related to setting a strict 
adherence to the training function. As for the external training field parameters, the 
noise level weights between the two terms, while the actual ‘difference’ between the 
competing step-functions is simply the noise strength 2rT. 

0.5 - 
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0.3 - 

0.2 - 

0.1 - 

io1 
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Flgure 1. Stability field distributions for fixed storage error F =1% and stability require- 
ment constant 6 = 1.0.  The three regimes shown are for lhree increasing training Beld 
arenglhs r r = O . l O  (a), 0.50 (b )  and 0.90 (c) wilh the mix level fixed at fT=0.24. Con- 
versely, these these fame regimes can be qualilalively reproduced with the noise levels 
decreasing fT=O.SO (a), 0.30 ( b )  and 0.10 (c) and the field strength fixed at rT=0.50; 
the major difference being the location of the delta-peaks at I( i 7.r. 

Figure l (a)  shows that the first regime is essentially the original Gardner training 
function distribution with a non-zero fractional storage error ( h i t  et a1 1990), except 
for a trivial rescaling in the stability requirement constant K -+ ( K  + T=). Thii 
occurs when the ‘erroneous’ f, term in the training function (6) dominates over the 
‘correct’ (1 - f,) part. This happens for low storage errors F, as strictly requiring the 
erroneous part to be trained automatically ensures adherence of the easier correct 
part. Indeed, for the strictest zero storage error case, the distribution is the same as 
the original Gardner case regardless of the other parameters and no new behaviour 
will occur. With a finite storage error, this figure l ( a )  regime can still be visited by a 
low enough external field strength 7, and/or a high field noise level f,-the former 
because there is then little difference between the two training terms, and the latter 
because the function becomes weighted in favour of the erroneous part. 

Novel behaviour is shown in figure 1(b), which is made by k ing  the storage error 
to a non-zero value while further raising the external field strength and/or lowering 
the fractional noise. This new regime has an additional delta peak at ( K  - rT) and 
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is the manifestation of stability fields that satisfy the correct term in the training 
function, but not the tougher erroneous term, as aided by suitably weighting towards 
the former. 

Further raising and/or lowering the external field parameters produces the final 
regime shown in figure l(c). Here the correct term in the performance function 
continues to grow in importance over the erroneous part, expanding its share of the 
distribution at the expense of the delta peak at ( I C  i- rT). As the external field 
strength further increases, this diminishing delta peak eventually disappears and the 
curve returns to the Gardner case but with the rescaling n + (n - rr). 

H W Yau and D J Wallace 

4. Critical-points of the dynamics 

The principle aim here is to discover the attractor structure of the network's retrieval 
dynamics, and this is achieved by numerically seeking out the ked-points of the 
iterative map equation (11) for the overlap measure m. The stable solutions indicate 
attractor centres, while unstable ones are defined as the attractor boundaries. From 
these two values of the overlap, the fidelity of the attractor to its training pattern and 
the size of the basin of attraction are revealed. 

Ignoring the external field parameters, the network's iterative dynamics is essen- 
tially described by equation (ll), for the storage capacity a in equation (10) and 
fractional storage error F of (9). The effect of the training and retrieval external 
fields will be discussed in detail in subsequent subsections, but for now the focus is 
on the effects of varying the storage capacity and storage error. 

The storage capacity a is a particularly interesting quantity to examine since it 
gives a readily accessible indication of a network's performance. Using the original 
Gardner case with no external fields and zero error in the storage, two important 
phases in the storage-overlap (a, m) space can be identified. 

At very low storage capacities the basin boundary has an overlap of essentially 
zero, implying r e t r i ed  of the pattern is guaranteed for any positive, infinitesimal 
initial overlap. As the number of patterns stored by the network is increased, a 
storage load is reached where the attractors to each memory pattern can no longer 
avoid the others, and shrink their basin boundaries in response. This storage load 
signals the upper bound for the region of wide relrieval, beyond which a macroscopic 
initial overlap is necessaly for retrieval. 

Further increase in the storage load squeezes the basin of attraction until it and 
the attractor vanish altogether, making r e t r i ed  of a pattern is impossible. Between 
this saturation point and the end of the wide retrieval region is the region of narrow 
retrieval. 

For the cases to be examined, much emphasis is placed on how these regions Of 
wide and narrow retrieval are affected by the external fields. Operationally, these 
are marked out by points in the storage-overlap space where stable and unstable 
fixed-points meet. Henceforth they will be referred to as crilical points and denoted 
by hats: (&,&), such that the region of wide retrieval is from Q = 0 to the critical 
point (ho,in0), and the region of narrow retrieval from (ho, h0) to 

For the zero storage error Gardner case, the wide- and narrow-retrieval regions 
are bounded by (h, = 0.42,&, = 0.0) and (hl  = 2 .0 ,&,  = 1.0) respectively 
(Gardner 1989). From zero storage to  the end of the narrow-retrieval region there 
is a stable fixed-point at m = 1 for the memory attractor, but for storage a > ho 
there is another spurious attractor with overlap m = 0. 
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The fraction of erroneous bits per pattern stored is parametrized by equation 
(9). The effect of increasing this value F is to  decrease the quality of the memory 
attractor, and a corresponding squeezing of the narrow-retrieval region (Amit ef 
a1 1990). This simple (and somewhat unproductive) response to storage error is 
qualitatively reproduced for this model a t  errors of 0.1, 1, 5, and 10% of the bits per 
pattern Consequently, in the cases that follow the storage error is always fixed at the 
somewhat arbitrary value of 1%. 

Finally this leaves the external field parameters to examine. The cases presented 
in the following subsections look at the effect on the critical points with a training 
field (fT,7=) only, with a retrieval field (fn, 7,) only, and with statistically equal 
training and retrieval fields (f, = f , ,  T~ = T~). The principal means of showing 
their effect is by looking at the regions of wide and narrow retrieval, by plotting the 
critical points’ overlap (- - -) and storage (-). 

4.1. Painingjield only 
Figures 2(a) and 2(b )  show the critical-points as the training noise strength is in- 
creased, for two levels of training noise at fT=0.20 and fT=0.24, respectively. 

The straightfonvard behaviour shown in figure 2(a)  is typical for low noise levels 
(below f,-0.05 the network is essentially insensitive to the training field). Given 
a sufficient noise level, however, the improved content addressability of the system 
becomes readily apparent by the increased size of the wide-retrieval region as bounded 
by the critical point (&,,ino), peaking at &La = 0.52 for a field strength T= = 
0.52. As the number of patterns that can be retrieved with a microscopic initial 
overlap has increased, the basin of attraction can therefore be said to have widened. 
Unfortunately this improvement is seemingly at the expense of the narrow-retrieval 
region, whose decrease worsens tne number of patterns that can be stored beiore 
saturating the network 

Increasing the training noise above f,- 0.21 complicates the critical-point plots 
considerably, as the typical example at f, = 0.24 in figure 2(b) shows. 

For low field strengths up to 7,- 0.36 the wide- and narrow-retrieval regions 
increase and decrease respectively, as in the example discussed above. Additional 
SIruCIum indicating new criticai points appear as the Beid strength is further in- 
creased, and are best understood by referring to their ked-point diagrams. The 
important ‘snapshots’ for this example are given in figures 2(c)-2(e), which plot the 
futed-points against increasing storage levels, for increasing field strengths. 

Figure 2(c) shows that as the field strength is increased the (C%~,A,) critical- 
point marking the narrow-retriwat region starts to merge into the wide-retrieval point 
(&,,,rho). Meanwhile two new critical points appear near overlap m - 1, indicating 
the formation of a stable attractor in addition to the memory pattern’s, but of lower 
fidelity. In figure 2 ( d )  the old ( G I ,  inl) critical-point vanishes but its role marking 
out the region of wide-retrieval is quickly taken over by one of the two new critical 
points. Finally in figure 2(e) the other critical point coalesces into the wide-retrieval 
point, taking with it the extraneous attractor. 

to have little practical consequence. Indeed if anything it appears to degrade the 
region of wide retrieval over some range of external field strengths, and hence may 
be considered as indicative of the maximum noise level to choose. 

This structure is not, however, a result of instability in the replica-symmetric 
solution and cannot be dismissed on those grounds. The indications are that these 

c ,c  e x m  s;:acta:e brosght n!ong bj the 2ppea:asce of the em2 a!t:BCto: seems 



5646 H W You and D J Wallace 

~ .......... J...- ..... 1 ....... --..--!!) 
0.5 1.0 1.5 2.0 

Training Field Strength 

Figure 1. 'Raining field only, for fixed 1% storage error with field noise levels f ~ = 0 . 2 0  
(a) and 0.24 (b),(c) and (e). Pam (a) and (b) plot the effect of increasing field strength 
on the critical points' overlaps (- - -) and slorage (-). Pans @)-(e) are 'snapshots' 
showing the rixxed-point maps which causes the added structure of (b). 

In (a) there are just two critical-points being tracked: the ( d o ,  rho)  line with zero 
overlap and storage staning a1 0.42 which marks the upper-bound of wide-retrieval, and 
the (SI, ml) line staning with overlap - 0.98 and storage -0.90 which marks the end 
of narrow-retrieval. n t e  increase in the wide-retrieval region as indicated by SO show 
content addresability is improved, but the decrease in &I s h w  a worsening of the 
network's Saturation limit, ir, the narrow retrieval region. 

With a higher noise level (b) the critical-points plot appears to be far more complicated. 
However, this additional S ~ N C ~ U E  has a straightforward origin and is due entirely to the 
creation, and later disappearance of, an additional stable fixed point of lower quality 
than the memoly attractor. The evolution of this ~tructure can be explicitly seen by 
examining the rixed-point maps from which the critical-points are extracted. as shom in 

( c x e )  'snapshots' showing the rixed-point maps which cause the added structure of 
(b) .  ?he evolution i s  shown by plotting the fixed-point of overlap against storage capacity, 
far several increasing field strengths with the largest strength plot drawn in broken lines. 

In ( E )  the plots are drawn with training field strengths of TT A . 2 0 ,  0.28, 0.36. 0.44 
and (in broken lines) 0.52. For low field strengths T~ =0.20, 0.28 and 0.36 the wide and 
narrow retrieval regions as marked out by the critical-points ( & o , h o )  and ( S t , m ~ )  
increase and decrease respectively, as i n  (a ) .  However as the field strength increases 
from rT =0.36 to 0.44, a new attractor is crealed with a stable fixed-point in merlap 
from m=O.OO to m E 0.90. 

Next in (d) the field strength is increased to rT =0.52, 0.56, 0.60, 0.64 and 0.68. Here 
the original (S1, 6 1 )  critical point merges into the (So, h o )  point a1 the abscissa at 
T~ =0.60-0.64. Its role marking out the region of narrow relneval having already been 
usurped by one of the critical-points associated with the new alltactor created in (C). 

Finally in (e), as the training field strength is further increased by TT =0.68, 0.84, 
1.00, 1.16 and 1.32, the alraneous attractor's stable fixed-point also disappears in10 the 
abscissa, merging the final extraneous critical point into the (So,ho)  point. 

( C H C ) .  



Enlarging the atfractor basins of neural networks 5641 

solutions are unstable at very high storage loads which are never approached in the 
cases discussed. 

4.2. Retrieval field only 

As mentioned above, the effect of an external persistent field upon the retrieval 
dynamics has recently been studied for the zero storage error (Engel et 01 lw), but 
it is still useful to consider the 1% error case for the sake of direct comparisons. 

For low retrieval noises (figure 3(a)) below fT - 0.20 the structure is straigbtfor- 
ward with no new attractors appearing. However, unlike the training-field only case, 
introduction of the retrieval field breaks the invariance of the dynamical equation 
(11) to m -+ -m overlap flips, hence raising the critical point's overlap 61, above 
zero. Consequently the stable zero-overlap attractor at a > 8, is replaced with a 
macroscopic one induced by the external field. Meantime the wide-retrieval region &,, 
increases, then eventually coalesces with the falling narrow-retrieval point Beyond 
this the retrieval map has no critical points, and instead there is just one attractor 
of steadily decreasing quality with increasing storage, signalling the dominance of the 
external field in the network's dynamics. 

0.6 1.0 . ph  .....-_.._._.__.______ 

Y) 
..a _/- E: ' E  0.6 
a 

,-- __-- 
_.*- ,I _* 

1 / ,/' ,,I' 

E 0.4 1'' 

c 

1 bl 

0.2 0.4 0.6 0.8 1.0 
ill) 

0.1 0.2 0.3 0.4 0.5 
Retrieval Field Strength Retrieval Field Strength 

1:: , , , , , , , , , 

0.2 * 

0.0 

F@re 3. Retrieval 6eld only. Plot of critical-points for 1% storage error with a low noise 
level f , - O . Z O  (a), and a higher one f ~ = 0 . 3 0  (b).  As with figures 2(a) and ( b )  these 
are joint plots of the critical points' overlaps (- - -) and storage (-). The critical 
p i n u  ofwide and n a m  retrieval eventually come together at rR=0.38 whereupon with 
the lower noise example (a) the network has a single (stable) fixed point o f  decreasing 
quarny wll" Slolags, yrcvmung 11 anlplc Ycllldrcau"" U, l,lC I C L , I s V I I  rrg1uns. nowever, 
study o f  the Bxed-point maps indicate that the basin of attraction does not improve with 
funher i n c m  in the retrieval field strength. and this is corroborated by the second 
plot (b) where the critical points do suwive. 

. . . - . .L~~~~I.L ~.~ .... ?.- ~ > ?.- -c... A-.., ... :..- 

Retrieving with the slightly noisier field shown by figure 3(b) retains the critical 
nnintq thr~ggh~fit I!! the field s!rength. range. r--- 
how the regions of wide and narrow retrieval decrease for large field strengths. In 
comparison to the example in figure 3(a)  this is able to show the eventual polarization 
of the spin sites to the external retrieval field. 

Lastly, both the plots given here are within the regime where replica-symmetry is 
stable. 

c~nsquenfly it & pnrsib!e see 
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4.3. Equal training and retrieval fields 

Since the motivation for this work is the training of the network with ensembles of 
external noisy patterns, it seems reasonable to expect the best performance with (sta- 
tistically) identical training and retrieval fields. The plots of such an assumption are 
presented in figures 4(a) and 4(b), for two levels of external field noise. The most 
immediately apparent observation is their similarity to the pure retrieval field cases- 
identical for low field strengths f T I R  <- 0.20. For higher strengths differences do  
occur, manifesting as higher wide-retrieval regions. These differences are compared 
in table 1 which shows the maximum wide-retrieval storages max{B,} and the cor- 
responding ‘best’ field strength, amongst the three cases discussed above for three 
field noise levels. Nonetheless the improvements are such it may be implied that the 
retrieval field has a disproportionate effect on the dynamics, and hence an ‘optimal’ 
combination of training and retrieval fields may involve weakening the latter. This 
hypothesis is supported by the disparate best external field strengths to use. 

H W Ynu und D J Wallace 

0 . 0 ,  1 , , , , , , , , i o1  , , I I bl 

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 
Training & Retrieval Strength Training & Retrieval Strength 

F@re 4. Equal training and retrieval external fields parameters. Plot of crilical p i n &  
for storage error once again at 1%, and training and relrieval noise levels are f ~ p = O . 2 0  
(4) and 0.30 (b) respectively. The plots’ similarity with the pure-retrieval case suggests 
the dynamics is overly dominated by that field. 

Table 1. Comparison of the three training and retrieval cases, for three field noise levels. 
The entries refer to 1he largesl maximum wide-retrieval slorage capacilies and the field 
strengths used l o  obtain that. For comparison, the region of wide-retrieval in the original 
Gardner model is bounded by &O = 0.42 .  

Mean External Field Noise Level 

0 . 2 0  0.24 0.30  

max{&} best{r) bert{r) max{&) best{r} 

’Raining field only 0 .52  0.52 0.52 0.60  0.50 0.50 
Retrieval field only 0.72 0 .38  0.66 0.38  0.60 0.38 
Equal training and 
retrieval fields 0.76 0.30  0.71 0.32 0.63 0 .36  
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Once again the results presented here lie within the replica-symmetrically stable 
regime. 

5. Concluding r emarh  

The properties of a neural network model with optimal connections, trained and 
later retrieved with noisy external fields, is calculated. Novel behaviour from the 
original Gardner model is found for non-zero storage errors with certain ranges in 
the training field parameters. This affects the iterative dynamics retrieval equation via 
three distinct regimes for the stability field distribution, storage capacity and fractional 
storage error. 

Improvements in the basins of attraction are looked for in three cases: training 
&id oiity, reiiievai iieid oniy, and statisticaiiy equai training and retriemi fieids. i n  rii 
three cases the region of wide retrieval can be improved above the original Gardner 
model's &,, = 0.42, with the equal field case marginally highest; e.g. max{b,,} = 
0.76 for training and retrieval fields at strength 0.30 and noise level 0.20. However, 
this slight improvement over the corresponding retrieval-field only case (0.72), and the 
differing value for the best field strength (0.38), perhaps suggests the retrieval field 
is dominating the dynamics and that a simple equality is not the optimal relationship 
between the training and retrieval field parameters. 

Finally, stability of the replica-symmetric ansatz appears to  be respected in all the 
cases discussed. 

Arlmnu.ln.lnman+~ '.-...."...-"6 ... C... I 
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